Mathematik Kompendium

Inhaltsverzeichnis

Rechnen – Grundrechnungsarten	4
Begriffe (vocabulary)	
Beispiele zu den Grundrechnungsarten:	4
Formen I	4
Rechteck und Quadrat	5
Begriffe (vocabulary)	
Das Rechteck	
Das Quadrat	
Körper	
Das Prisma	6
Volumen - Prisma	7
Das Dreieck	9
Dreiseitiges Prisma	9
Die Zahlen	11
Die Bruchrechnung	12
Addieren und Subtrahieren von Brüchen	13
Brucharten:	13
Multiplizieren mit Brüchen	13
Dividieren von Brüchen	14
Der Kehrwert:	14
Die Prozentrechnung (%)	14
Die Schlussrechnung (1) "je mehr, desto mehr"	16
Runden von Zahlen (≈)	17
Runden üben:	19
Die Schlussrechnung (2) "je mehr, desto weniger"	20
Der Kassazettel – Der Bon – Die Rechnung	22
Die Mehrwertsteuer (MwSt)	22
Rabatt	23
Prozente sind Brüche!	24
Platonische Körper	25
Das Koordinatensystem	26

Arbeiten im Koordinatensystem	27
"Klampunstri" – Klammer vor Punkt vor Strich	28
Üben, üben, üben	29
Die Maßeinheiten – das Maß Längenmaße Flächenmaße Raummaße	32 32
Übungen – Maßeinheiten umwandelnFehle	
Verschiedene Maßeinheiten	
Terme und Variablen	
Multiplieren von Termen	
Multiplizieren von Termen mit Hochzahlen	
Gleichungen	36
Äquivalenzumformung	36
Flächenberechnung bei verschiedenen Dreiecken	38
Das allgemeine Dreieck	
Das rechtwinkelige Dreieck	39
Der Zylinder	
Wiederholung: der Kreis	
Zylinder – Beispiele:	
Beispiel – Zylinder	
Der Kegel	
Oberfläche und Volumen des Kegels Beispiel "Eistüte"	
• "	
Die Kugel	
Die Wurzel	
Terme und Wurzeln	43
Zahlenmengen	
Menge der natürlichen Zahlen N	
Menge der ganzen Zahlen Z	
Menge der rationalen Zahlen Q	
Menge der reellen Zahlen R	
Mathematische Fachsprache / Zeichen	
Beispiele für mathematische Zeichen	45
Der Satz des Pythagoras	45
Funktionen	46
Beispiel	46
Darstellung von Funktionen	47
Funktionen im Alltag	48
Handytarif – Mobilfunkvertrag	48

<u>Mathe-Kompendium</u> © 2023 by <u>Kai Hebein</u> is licensed under <u>CC BY-SA 4.0</u>

Statistik und Diagramme	51
Weg-Zeit Funktion mit Vorsprung	
Weg-Zeit Funktion	
Funktionsgleichung-Allgemein	49
Äpfel kaufen	
Funktionsgleichung mit "Grundgebühr"	49

Rechnen – Grundrechnungsarten

Begriffe (vocabulary)

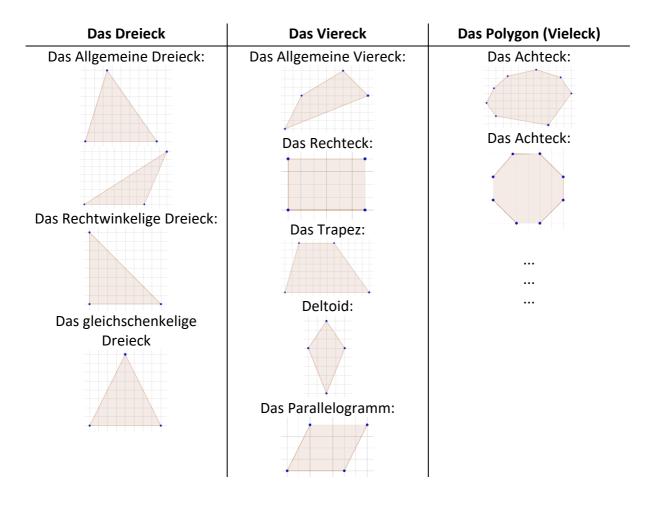
+ ... die Addition ... PLUS
- ... die Subtraktion ... MINUS
· ... die Multiplikation ... MAL

: ... die Division ... DIVIDIERT / GETEILT DURCH

Beispiele zu den Grundrechnungsarten:

$$+$$
 $:$ $28 + 19 = 47$ $63 - 42 = 21$ $8 \cdot 9 = 72$ $30: 6 = 2$

Formen I



Rechteck und Quadrat

Begriffe (vocabulary)

Flächeninhalt : A (engl.: area)

Umfang : U

Das Rechteck

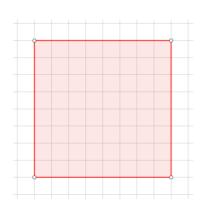
$$A = l \cdot b$$

ODER
$$A = a \cdot b$$

$$U = 2 \cdot (l + b)$$
 ODER $U = 2 \cdot (a + b)$

$$U = 2 \cdot (a + b)$$

Das Quadrat



$$A = l \cdot l = l^2$$

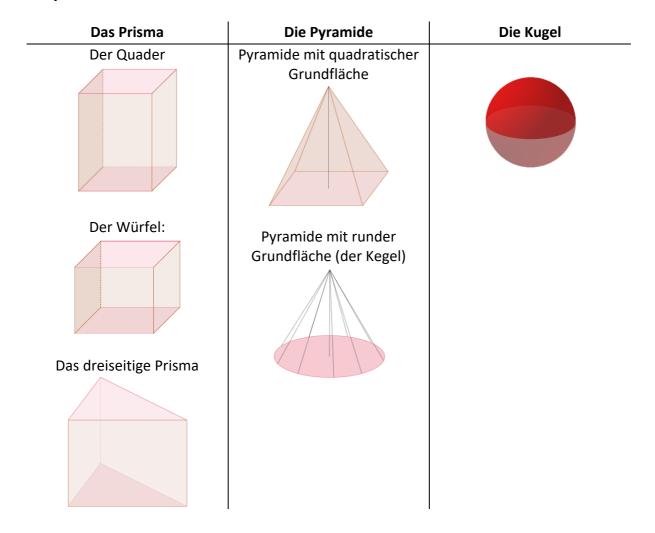
ODER
$$A = \mathbf{a} \cdot \mathbf{a} = a^2$$

$$U = 2 \cdot (l + l)$$

$$U = 4 \cdot i$$

ODER
$$U = 4 \cdot l$$
 ODER $U = 4 \cdot a$

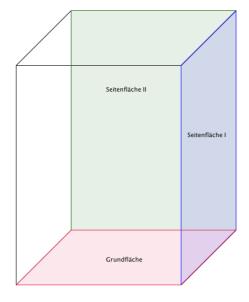
Körper



Das Prisma

Prismen sind Körper mit folgenden Eigenschaften:

- Grundfläche und Deckfläche sind gleich groß
- Grundfläche und Deckfläche sind parallel



G ... Grundfläche

M ... Mantel

O ... Oberfläche

 S_I ... Seitenfläche I

 S_{II} ... Seitenfläche II

Die Grundfläche kommt beim Prisma **immer** zwei Mal vor. Beim Quader gibt es 2-mal Seitenfläche I und 2-mal Seitenfläche II.

Quader:

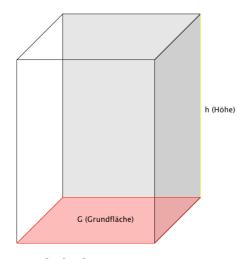
$$G = l \cdot b$$

$$M = 2 \cdot S_I + 2 \cdot S_{II}$$

$$O = 2 \cdot G + M$$

Volumen - Prisma

Jeder Körper hat ein Volumen (V).



 $V = l \cdot b \cdot h = 4cm \cdot 2cm \cdot 8cm$

Volumen = Grundfläche mal Höhe

$$V = G \cdot h$$

Beispiel:

gegeben: Quader

I = 4cm

b= 2cm

h= 8cm

gesucht: Volumen (V)

$$V = G \cdot h$$

$$V = 64cm^{2}$$

Länge:

Meter m – Dezimeter dm – Zentimeter cm – Millimeter mm

Fläche:

Quadratmeter m^2 - Quadratdezimeter dm^2 - Quadratzentimeter cm^2 - Quadratmillimeter mm^2

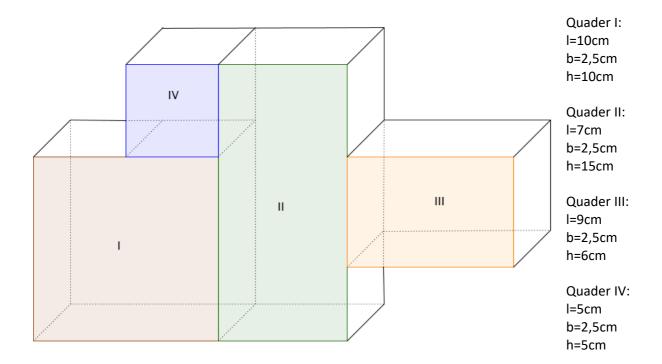
Volumen:

Kubikmeter m^3 - Kubikdezimeter dm^3 – Kubikzentimeter cm^3 - Kubikmillimeter mm^3

Beispiel:

Gegeben: Zusammengesetzter Körper (Quader I, II, III, IV)

Gesucht: V (Volumen)



Formeln:
$$V = G \cdot h$$
 $O = 2 \cdot G + M$ $G = l \cdot b$

$$\begin{array}{ll} V_I = G_I \cdot h & G_I = 10cm \cdot 2{,}5cm = 25cm^2 \\ V_I = 25cm^2 \cdot 10cm = 250cm^3 \end{array}$$

$$\begin{array}{ll} V_{II} = G_{II} \cdot h & G_{II} = 7cm \cdot 2,5cm = 17,5cm^2 \\ V_{II} = 17,5cm^2 \cdot 15cm = 262,5cm^3 \end{array}$$

$$V_{III} = G_{III} \cdot h$$

$$G_{III} = 9cm \cdot 2,5cm = 22,5cm^2$$

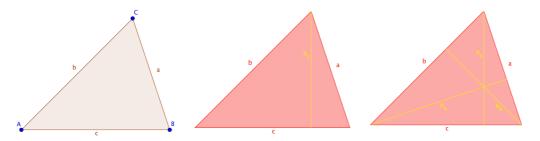
$$V_{III} = 22,5cm^2 \cdot 6cm = 135cm^3$$

$$V_{IV} = G_{IV} \cdot h$$
 $G_{IV} = 5cm \cdot 2,5cm = 12,5cm^2$ $V_{IV} = 12,5cm^2 \cdot 5cm = 62,5cm^3$

$$\begin{split} V_{Gesamt} &= V_I + V_{II} + V_{III} + V_{IV} \\ V_{Gesamt} &= 250cm^3 + 262,5cm^3 + 135cm^3 + 62,5cm^3 \\ V_{Gesamt} &= 710cm^3 \end{split}$$

Das Dreieck

Eine Form mit 3 Ecken nennt man Dreieck (3 = Drei)



$$U = a + b + c$$

$$A = \frac{c \cdot h_c}{2} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2}$$

Beispiel:

Gegeben: Dreieck

a= 7,8cm

b= 7,9cm

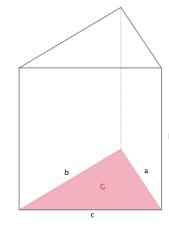
c= 10cm

 $h_c = 6cm$

gesucht: U, A

$$U = a + b + c$$
 $A = \frac{c \cdot h_c}{2}$
 $U = 7,8cm + 7,9cm + 10cm$ $A = \frac{10cm \cdot 6ct}{2}$
 $U = 25,7cm$ $A = 30cm$

Dreiseitiges Prisma



Ein Dreiseitiges Prisma hat ein Dreieck als Grundfläche (G ... Dreieck)

$$V = G \cdot h$$

$$O = 2 \cdot G + M$$

$$^{\mathsf{h}}$$
 $M = U_G \cdot h$

$$G = \frac{c \cdot h_c}{2} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2}$$

Beispiel:

Gegeben: Dreiseitiges Prisma

a= 16,3cm

b= 16,3cm

c= 22,7cm

h_c= 11,2cm

h= 114cm

gesucht: V, O

$$V = G \cdot h$$

$$V=G\cdot h$$

$$V = 127,12cm^2 \cdot 114cm$$

$$V = 14491,68cm^3$$

$$G =$$

$$G = \frac{2}{2}$$

$$G=127,12cm^2$$

$$O = 2 \cdot G + M$$

$$= 2 \cdot G + M$$

$$M = U \cdot h$$

$$U = a + b + c$$

$$0 = 2 \cdot 127,12cm^2 6304,2cm^2$$

$$M = 55,3 \cdot 114cm$$

$$O = 2 \cdot 127,12cm^2 6304,2cm^2$$
 $M = 55,3 \cdot 114cm$ $U = 16,3cm + 16,3cm + 22,7cm$

$$O = 6558,44cm^2$$

$$M=6304,2cm^2$$

$$U = 55,3$$
cm

Die Zahlen

No.	Deutsch	No.	Deutsch
0	Null		
1	Eins	11	Elf
2	Zwei	12	Zwölf
3	Drei	13	Dreizehn
4	Vier	14	Vierzehn
5	Fünf	15	Fünfzehn
6	Sechs	16	Sechzehn
7	Sieben	17	Siebzehn
8	Acht	18	Achtzehn
9	Neun	19	Neunzehn
10	Zehn	20	Zwanzig

20,30,40,50, ... 100 (+ = und)

No.	Deutsch	No.	Deutsch
21	Einund zwanzig	40	Vierzig
22	Zwei <mark>und</mark> zwanzig	50	Fünfzig
•••	•••	60	Sechzig
30	Dreißig	70	Siebzig
31	Einundreißig	80	Achtzig
•••	•••	90	Neunzig
100	Hundert	200	Zweihundert
101	Hunderteins	300	Dreihundert
102	Hundertzwei	400	Vierhundert
•••	_		
1000	Tausend		
2000	Zweitausend		

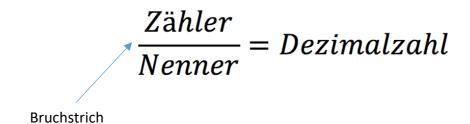
Die Bruchrechnung

$$\frac{1}{3} = 0.3333 \dots$$
 $\frac{1}{10} = 0.1$ $\frac{1}{2} = 0.5$ (Ein Drittel) (Ein Zehntel) (Ein Halbes)

$$\frac{2}{5} = 0.4$$

$$\frac{1}{4} = 0.25$$

$$\frac{3}{14} = 0.1$$
 (Zwei Fünftel) (Drei Vierzehntel)



Der Bruchstrich ist ein Divisions-Zeichen:

$$\frac{1}{4} = 0.25 = 1:4$$

 $\frac{1}{4} = 0.25$ (Ein Viertel ist Null Komma Fünfundzwanzig)

Kürzen:

(Zähler und Nenner durch die selbe Zahl <u>dividieren</u>!)

$$:2 : 2 : 2$$

$$\rightarrow \rightarrow \rightarrow$$

$$\frac{8}{16} = \frac{4}{8} = \frac{2}{4} = \frac{1}{2}$$

$$\rightarrow \rightarrow$$

$$:2 : 2 : 2$$

Erweitern:

(Zähler und Nenner mit der selben Zahl <u>multiplizieren!</u>)

$$\begin{array}{cccc}
*2 & *2 & *2 \\
\rightarrow & \rightarrow & \rightarrow \\
\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \frac{8}{16} \\
\rightarrow & \rightarrow & \rightarrow \\
*2 & *2 & *2
\end{array}$$

Addieren und Subtrahieren von Brüchen

Merke: Beim Addieren und Subtrahieren von Brüchen muss der Nenner gleich sein.

Beispiel:

$$\frac{1}{4} + \frac{1}{4} = \frac{2}{4}$$

$$\frac{1}{4} + \frac{3}{8} = \frac{2}{8} + \frac{3}{8} = \frac{5}{8}$$

$$\frac{3}{4} - \frac{1}{8} = \frac{6}{8} - \frac{1}{8} = \frac{5}{8}$$

$$\frac{1}{4} + \frac{1}{5} = \frac{5}{20} + \frac{4}{20} = \frac{9}{20}$$

Tipp: Vor dem Addieren kann man oft schon kürzen. Zuerst kürzen, danach rechnen! Am Ende immer kürzen!

Brucharten:

: $\frac{a}{b} < 1$ (Der Bruch ist kleiner als 1) : $\frac{a}{b} > 1$ (Der Bruch ist größer als 1) Echter Bruch

Unechter Bruch

 $: \frac{1}{h}$ (Der Zähler ist 1) Stammbruch

Gemischter Bruch : $a \frac{b}{c} = \frac{a \cdot c + b}{c}$ (Ganze kann man vor den Bruch schreiben, z.B. $\frac{4}{3} = 1\frac{1}{3}$)

Multiplizieren mit Brüchen

$$\frac{\textit{Z\"{a}hler}}{\textit{Nenner}} \cdot \frac{\textit{Z\"{a}hler}}{\textit{Nenner}} = \frac{\textit{Z\"{a}hler} \cdot \textit{Z\"{a}hler}}{\textit{Nenner} \cdot \textit{Nenner}}$$

Tipp: Beim Multiplizieren bleiben alle Brüche gleich, man muss keinen gemeinsamen

Nenner finden! Man kann statt "mal" auch "von" sagen!

Tipp: Zuerst kürzen, danach rechnen und am Ende immer kürzen!

Beispiel:

 $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$ Ein Halb **mal** ein Viertel **ist** ein Achtel.

Ein Halb **von** einem Viertel **ist** ein Achtel.

... Die Hälfte einer Viertel-Pizza ist eine Achtel-Pizza.

(Ein Viertel)

(Ein Achtel)

Dividieren von Brüchen

$$\frac{1}{2} : \frac{1}{3} = \frac{1}{2} \cdot \frac{3}{1} = \frac{3}{2}$$

$$\frac{Z\ddot{a}hler}{Nenner} : \frac{Z\ddot{a}hler}{Nenner} = \frac{Z\ddot{a}hler}{Nenner} : \frac{Nenner}{Z\ddot{a}hler}$$

$$\frac{1}{3}$$
 (ein Drittel) $\frac{3}{1}$ (drei Eintel = Kehrwert)

Der Kehrwert:

Der Kehrwert entsteht, wenn man Zähler und Nenner vertauscht (umkehrt).

Merke: Beim Dividieren von Brüchen multipliziere mit dem <u>Kehrwert</u> des zweiten

Bruches.

Tipp: Zuerst kürzen, danach rechnen und am Ende immer kürzen!

Die Prozentrechnung (%)

% ... Zeichen für Prozent (Teile von Hundert)

10% ... Zehn Prozent (Zehnt Teile von Hundert Teilen, 10 von 100)

25% ... Fünfundzwanzig Prozent (25 von 100)

Merke: Prozentangaben sind Brüche!

Beispiel:

$$13\% = 13$$
 Teile von $100 = \frac{13}{100}$

$$25\% = 25 \, Teile \, von \, 100 = \frac{25}{100} = \frac{1}{4}$$

$$50\% = \frac{50}{100} = \frac{1}{2}$$

• • •

Aufgabe: Berechne den Anteil

50% von 120€ = 50% · 120€ =
$$\frac{1}{2}$$
 · 120€ = 0,5 · 120€ = 60€

Tipp: Bei Brüchen gilt: "von" heißt "mal".

Die Schlussrechnung (1) "je mehr, desto mehr"

18 Kinder in der 4c – Klasse:

Land	Anzahl
Syrien	6
Polen	5
Serbien	2
Rumänien	2
Bosnien	1
Afghanistan	1
Türkei	1

18 Kinder sind 100% (18K=100%)

Frage: Wie viel Prozent sind aus Syrien, aus Polen, ...?

Syrien:

	Kinder	Prozent	
.10	18	100%	.10
:18	1	5,55%	:18
*6	6	33,3%	*6

6 Kinder der 4c-Klasse sind aus Syrien, das sind 33,3%

Polen:

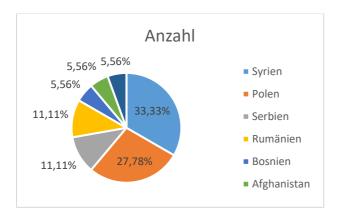
	Kinder	Prozent	
.10	18	100%	.10
:18	1	5,55%	:18
*5	5	27,75%	*5

5 Kinder der 4c-Klasse sind aus Polen, das sind 27,75%

Serbien:

	Kinder	Prozent	
.10	18	100%	.10
:18	1	5,55%	:18
*2	2	11,1%	*5

2 Kinder der 4c-Klasse sind aus Serbien, das sind 11,1%



Runden von Zahlen (≈)

Beispiel:

9 **=** 9 (ist gleich)

9 ≈ 10 (ist gerundet)

Ab 5 wird aufgerundet. (15≈20) Unter 5 wird abgerundet. (13≈10)

- 1.) 1**2**≈10
- 2.) 9**9**≈1**00**
- 3.) 5**4≈50**
- 4.) 6**5≈70**
- 5.) 1**21**≈1**20**
- 6.) 199≈2**00**
- 7.) 8 777≈8 7**80**
- 8.) 9 556≈9 5**60**
- 9.) 9 999≈10 0**00**

9 5 5 6

Tausender	Hunderter	Zehner	Einer
9	5	5	6
9 000	500	50	6

2,367

2	,	3	6	7
Einer		Zehntel	Hundertstel	Tausendstel

Beispiel: Zahl: 9 345,45

- 9 Tausender (9 000)
- 3 Hunderter (300)
- 4 Zehner (40)
- 5 Einer (5)
- 4 Zehntel (0,4)
- 5 Hundertstel (0,05)

Runden auf Zehner

1.) $4\underline{56} \approx 4\underline{60}$ 2.) $\underline{73} \approx \underline{70}$ 3.) $9.7\underline{65} \approx 9.7\underline{70}$

Runden auf <u>Hunderter</u>

1.) $4\,\underline{590} \approx 4\,\underline{600}$ 2.) $3\,\underline{960} \approx 4\,\underline{000}$ 3.) $3\,\underline{234} \approx 3\,200$

Runden auf Zehntel:

2,<u>3</u>67 ≈ 2,4

Runden auf <u>Hundertstel</u>:

2,3<u>6</u>7 ≈ 2,370

Beispiel:

Richtige Zahlen : 0,30€ + 1,69€ + 1,73€ + 1,58€ = 5,30€

Gerundet auf Zehntel: 0,30€ + 1,70€ + 1,70€ + 1,60€ = 5,30€

Runden üben:

- 1.) Runde auf Einer
 - a) 3<u>4</u>,8 ≈ 35
 - b) 87<u>6</u>,5 ≈ 877
 - c) $812\ 354,2 \approx 812\ 354$
 - d) <u>1</u>,1 ≈ 1
- 2.) Runde auf Zehner
 - a) $3\underline{3}4 \approx 3\underline{3}0$
 - b) $944 \approx 940$
 - c) $2804 \approx 2800$
 - d) $8802 \approx 8800$
- 3.) Runde auf Hunderter
 - a) $8\underline{3}40 \approx 8300$
 - b) 9 786 ≈ 9 800
 - c) 87 <u>8</u>76 ≈ 87 900
 - d) $987 \underline{2}34 \approx 987 200$
- 4.) Runde auf Zehntel
 - a) $34,\underline{3}4 \approx 34,30$
 - b) $92,376 \approx 92,4$
 - c) $12, 86543 \approx 12,9$
 - d) $1,98 \approx 2$

Die Schlussrechnung (2) "je mehr, desto weniger"

Amir und Sebastian bauen einen Tisch. Sie brauchen 6 Stunden dafür. Wie lange brauchen sie, wenn Boris hilft? Mehr Personen → Weniger Stunden!

	Personen	Stunden	
	2	6	* 2
.2	1	12	. 7
*3	3	4	:3

Antwort: Sie brauchen 4 Stunden, wenn Boris hilft.

MERKE:

Wenn auf der linken Seite dividiert wird, dann muss rechts multipliziert werden (und umgekehrt!).

Beispiel 2:

25 Personen bauen eine Schule. Sie brauchen 305 Tage. Wie lange brauchen sie, wenn 12 Personen helfen? (37 Personen arbeiten insgesamt)

	Personen	Tage	
.25	25	305	*25
:25	1	7 625	. 25
*37	37	206,08	:37

Antwort: Sie brauchen 206,08 Tage.

Beispiel 3:

6 Hunde kommen mit dem Futter 24 Tage aus. Wie lange kommen 8 Hunde damit aus?

Variante 1:

	Hunde	Tage	
	6	24	*6
:6	1	144	. 0
*8	8	18	:8

Antwort: 8 Hunde kommen mit dem Futter 18 Tage aus.

Variante 2:

6 ... 24 Tage

8 ... X

$$x = \frac{24 \cdot 6}{8} = 18$$

Beispiel 4:

Mohamad, Fares und Hussein räumen die Klasse auf. Sie brauchen dafür 50 Minuten.

- a) Wie lange dauert es, wenn Fares nicht mithilft?
- b) Wie lange dauert es, wenn Mohamad alleine aufräumt?
- c) Wie lange dauert es, wenn heute alle Schülerinnen und Schüler der 4c-Klasse aufräumen?

Variante 1:

	Personen	Minuten		
.2	3	50	*2	
:3	1	150	3	
*2	2	75	:2	
	1	150		
*15	15	10	:15	

Antwort a: Es dauert 75 Minuten. Antwort b: Es dauert 150 Minuten.

Antwort c: Es dauert 10 Minuten, wenn alle

Schülerinnen und Schüler der 4c Klasse aufräumen.

Beispiel 5:

8 Kiwis kosten 3,20€. Wie viel kosten 10 Kiwis?

Der Kassazettel – Der Bon – Die Rechnung

1140 Vien Kendlerstrasse 22 Tel: 01 - 7896233 ATU 15255907

→ die Adresse des Geschäfts

Filiale: 01417 Kassa: 1 Bon-Nr: 1694

→ Informationen (Infos)

Pos: 4 Kassier: Fr.Jakl Re-Nr: 1417-20160930-01-1694 → Rechnungsnummer / Bon-Nummer

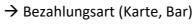
Datum: 30.09,2016 Zeit: 13:16 → das Datum und die Uhrzeit

2 x 0.15 0.30 Essiggurkerl Freshy Salami Käse B 0.116 x 14.90 Schärdinger Gouda 2 x 0.79

→ Positionen (hier: Artikel, die gekauft wurden)

1.69 1.73 Ja!Bio Kornspitz 1.58 Summe EUR 5.30 AND THE MAN PARTY COLD AND THE PARTY COLD AND AND THE PARTY COLD AND T Gegeben Karte 5.30 Maestro BEZAHLT **EUR** 5,30 17074292 030766 029011 20160930 131616 PAN: ***********4163 12/17 D01 EA0000000043060

→ Summe



Betrag dankend erhalten

MAESTRO CONTACTLESS

B: 10% MwSt von 4.82 =0.48

Vielen Dank für Ihren Einkauf! www.billa.at

→MwSt = **M**ehr**w**ert**st**euer

→ Steuer (Abgabe an den Staat – Österreich)

Die Mehrwertsteuer (MwSt)

Die Mehrwertsteuer ist eine Abgabe an "Österreich". Bei jedem Einkauf geht ein Teil des Geldes an den Staat.

: 10% (Essen, Getränke, ...) Bei Lebensmitteln

Bei anderen Produkten : 20% (Handy, Laptop, Bleistift, ...)

Beispiel: Ein Handy kostet 480€ (20% MwSt):

100 % (Netto)

20% (MwSt)

120% (Brutto) - Der Kaufpreis

Netto + MwSt = Brutto

Netto ... Preis ohne MwSt Brutto ... Preis mit MwSt

Unterschied: -20% - MwSt

2.) Ein Handy kostet 480€. Heute bezahlt

man keine MwSt. Wie viel kostet es noch?

1.) Ein Handy kostet 480€. Heute gibt es - 20% auf Handys. Wie viel kostet es noch? (- 20% vom Brutto-Preis)

120% ... 480€
100% ... X

$$x = \frac{480 \cdot 100}{120} = 400 \cdot 100$$

100% ... 480€
80% ... X

$$x = \frac{480 \cdot 80}{100} = 384 \cdot 80$$

A: Es kostet (nur) noch 400€.

A: Es kostet (nur) noch 384€.

Rabatt

Rabatt ist ein Geldbetrag, der vom Kaufpreis abgezogen wird.

Beispiel: Ich kaufe im Geschäft einen Bleistift. Er kostet 1,20€. Ich bekomme 0,20€ Rabatt. Jetzt kostet er nur noch 1€.

0,20€ = Rabatt

Ein Energy-Drink kostet 0,55€. Fares kauft 24 Stück (1 Karton). Der Rabatt beträgt 3,77€. Wie viel bezahlt Fares?

$$24 \cdot 0,55$$
€ = $13,20$ €
 $13,20$ € - $3,77$ € = $9,43$ €
 $3,77$ € = Rabatt

Ein 3 Weckerl kosten 2,37€. Heute gibt es 33% Rabatt! Wie viel muss ich bezahlen?

100% ... 2,37€ 33% ... X

$$x = \frac{2,37 \cdot 33}{100} = 0,78 \cdot$$

0,78€ = Rabatt 2,37€ - 0,78€ = 1,59€

A: Ich muss 1,59€ bezahlen.

Ein teurer Laptop kostet 1 999,00 €. Schüler bekommen 12,8% Rabatt. Wie viel muss man als Schüler bezahlen?

$$n = \frac{12.8}{100} \cdot 1999 \in 255,87 \in$$

255,87€ = Rabatt

1 999€ - 255,87€ = 1743,13

A: Als Schüler muss man 1743,13€ bezahlen.

Prozente sind Brüche!

Beispiel:

$$100\% = 1$$
 $50\% = 0,5$
 $22\% = \frac{22}{100} = 0,22$
 $20\% = 0,2$
 $\frac{1}{2}$
 $-$ Bruch
 $\frac{1}{2}$
 $-$ Dezimalzahl

Beispiel:

Eine einfache Fahrkarte in Wien kostet 2,20€.

Schüler bekommen 50% Rabatt. Wie viel kostet die Fahrkarte?

Schüler bezahlen nur 50% von 2,20€ (0,5 mal 2,20€)

A: Die Fahrkarte kostet 1,10€.

Eine Schere kostet 2,19 \in . Heute gibt es 7% Rabatt. Wie viel kostet die Schere. 100% - 7% = 93% (Dezimalzahl: 0,93) $0.93 \cdot 2.19 \in 2.04 \in$

A: Die Schere kostet 2,04€.

Pati kauft ein:

1 Flasche Eistee : 1 * 0,89 € 3 Hefte : 3 * 0,66 € 1 Taschenrechner : 1 * 23,50 € 2 MakeUp : 2 * 14,90 € :1*1119 1 iPhone 7 Plus € : 1 * 88,90 € 1 Paar Schuhe : 1 264,07€ Summe

Heute ist Pati-Day. Sie bekommt 11% Rabatt auf ihren Einkauf. Wie viel muss Pati bezahlen? Pati bezahlt dann nur mehr 89% (Dezimalzahl: 0,89)

$$0.89 \cdot 1264.07 \in 1125.02 \in$$

A: Pati bezahlt 1 125,02€

Platonische Körper

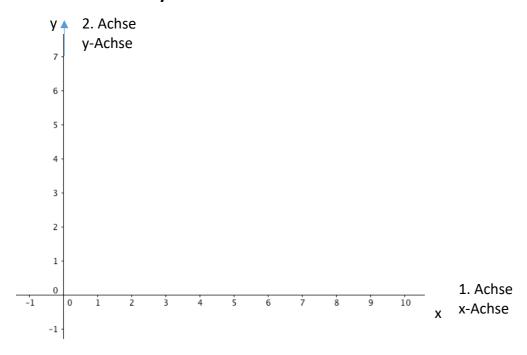
Benannt nach Platon (Griechenland). Es gibt insgesamt 5 Platonische Körper:

- 1. Tetraeder
 - =Vierflächner aus vier Dreiecken
- 2. Hexaeder
 - =Sechsflächner aus sechs Quadraten, bekannt als Würfel
- 3. Oktaeder
 - =Achtflächner aus acht Dreiecken
- 4. Dodekaeder
 - =Zwölfflächner aus zwölf Fünfecken
- 5. Ikosaeder
 - =Zwanzigflächner aus zwanzig Dreiecken

MERKE: Jeder Platonische Körper hat gleich große (kongruente) Außenflächen. Alle Kanten sind auch gleich lang. Platonische Körper sind Polyeder (Vielflächner).

Weitere Informationen bietet Wikipedia: de.wikipedia.org/wiki/Platonischer_Körper

Das Koordinatensystem



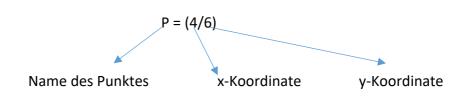
Im Koordinatensystem können Punkte eingezeichnet werden.

Punkt A: Der Punkt A hat die Koordinaten 4/2.

A=(4/2)

Punkt B: Der Punkte B hat die Koordinaten3,5/2,4.

B=(3,5/4,5)



M = (7/5)

 $M_2=(2/-2)$

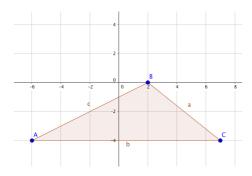
S=(7/6)

Gegeben: Dreieck

A = (-6/-4)

B = (2/0)

C = (7/-4)



Arbeiten im Koordinatensystem

Gegeben: Dreieck

$$A = (-8|-4)$$
 A=(x-Koordinate | y-Koordinate)

$$B = (2|-9)$$

$$C = (6|9)$$

Gesucht: Länge von hc; Die Koordinaten von H; Die Fläche "A"

$$h_c$$
= 17,89 $h_c \approx 18$ H=(-2|-7)

Mitarbeitsüberprüfung am 12. Jänner 2017.

Themen: Addition, Subtraktion, Multiplikation, Division, Rechteck, Quadrat, Dreieck, Bruchrechnung, Prisma, Schlussrechnung (1), Schlussrechnung (2), Die Rechnung/ Der Bon, Platonische Körper, Das Koordinatensystem;

"Klampunstri" – Klammer vor Punkt vor Strich

Das heißt:

- Zuerst: Klammerrechnung ()
- Danach: Punktrechnung (Multiplikation, Division)
- Zum Schluss: Strichrechnung (Addition, Subtraktion)

1. Beispiel:

$$2 \cdot 3 + 4 \cdot (12 - 9) =$$

$$2 \cdot 3 + 4 \cdot 3 =$$

$$6 + 12 = 18$$

2. Beispiel:

$$\frac{1}{3} + \left(\frac{7}{8} + \frac{3}{2} - \frac{5}{8}\right) \cdot \frac{1}{2} =$$

$$\frac{1}{3} + \left(\frac{7}{8} + \frac{12}{8} - \frac{5}{8}\right) \cdot \frac{1}{2} =$$

$$\frac{1}{3} + \frac{14}{8} \cdot \frac{1}{2} =$$

$$\frac{1}{3} + \frac{14 \cdot 1}{8 \cdot 2} =$$

$$\frac{1}{3} + \frac{14}{16} = \frac{1}{3} + \frac{7}{8} = \frac{8}{24} + \frac{21}{24} = \frac{29}{24} = 1\frac{5}{24}$$

Üben, üben, üben

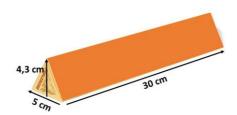
1.) Fülle die leeren Felder aus.

Länge	(Meter)	cm		Millimeter
	(Quadrat- meter)			
Volumen			mm³	

2.) Berechne das Volumen von deinem Tisch in der Schule (Du musst die Füße und die Tischplatte genau abmessen). Mache eine Skizze!

Maße:	I	Skizze:

3.) Berechne das Volumen und die Oberfläche dieser Schachtel/Packung:



4.) Berechne:

a)
$$5\frac{3}{4} + \frac{1}{5} : \left(\frac{15}{4} - 3\frac{1}{2}\right) =$$

b)
$$8 + 2 \cdot \frac{7}{20} + \frac{3}{25} =$$

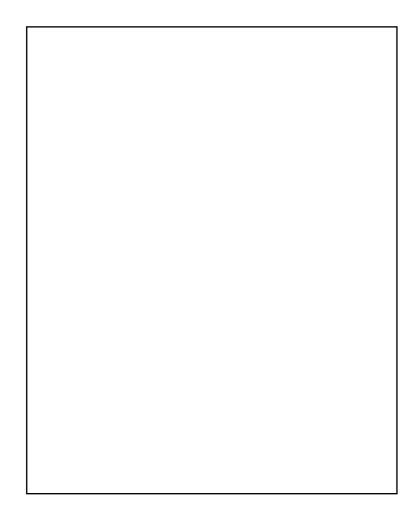
c)
$$\frac{\frac{7}{9}:3}{13:\frac{81}{7}}$$
 =

- 5.) Schau in die Klasse und schreibe auf und berechne:
- a) Wie viele Schülerinnen und Schüler sind jetzt in der Klasse?
- b) Wie viele kommen aus Syrien, Polen, ...
- c) Wie viel Prozent kommen aus Syrien, Polen, (Runde auf Einer!)
- d) Zeichne ein Rechteck, dass so viele Zentimeter lang ist wie bei a) herausgekommen ist und 3cm breit ist.
- e) Zeichne die Werte von c) in das Rechteck ein.

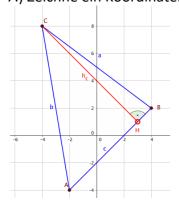
- 6.) Stell dir vor du eröffnest ein Geschäft.
- a) Erfinde einen Namen dafür und schreibe ihn auf. Name des Geschäfts:

b) Denke nach, was du in deinem Geschäft verkaufst. Der erste Kunde kauf 5 Produkte bei dir ein und bekommt einen Bon. Wie viel kosten die Sachen, wie viel muss der Kunde bezahlen, wie viel MwSt ist bei den Produkten,

c) Mache eine Zeichnung von diesem Bon und berechne alles richtig:



7.) Zeichne ein Koordinatensystem. Zeichne dieses Dreieck ein und berechne die Fläche.



Die Maßeinheiten – das Maß

Statt >>m<< können auch andere Buchstaben (Maße) stehen. Die Umrechnung bleibt immer **gleich**!!!

m ... der Meter l ... der Liter g ... das Gramm

Längenmaße

Ein "Schritt" gehen: eine "Stelle" weiter

LIII "Schille	Berrein.	CIIIC ,,	Jeene	WCICCI								
k ilo	h el	kto	d ek a		EINHEIT		d ezi		z enti		m i	lli
Tausend	Hun	dert	Zehn		1		Zehntel Hi		Hunde	Hundertstel		ndstel
Kilometer	Hekto	meter	Dekameter		Meter Dez		Dezir	meter Zentir		Zentimeter		neter
k m	h	m	da	da m m		n	d m		c m		m m	
<u></u>	.0	1	0	\. 10		·1	0	į	.0	1	0	
\ :1	.0	:1	0 J	:1	0 J	:1	0 J	1:1	.0 J	:1	0	

Flächenmaße

Ein "Schritt" gehen: zwei "Stellen" weiter

 - ,,50	1111	50110111		occircii.	WCit	C1							
k ilo		h el	kto	d e	k a EINH		HEIT d e		ezi z e		nti	m	illi
Tausen	nd	Hun	dert	Ze	Zehn		1		Zehntel		Hundertstel		ndstel
km²	2	h r	n ²	da	dam²		n ² dm ²		n ²	c m ²		m m²	
•	•10	00	•10	00	10	00	•10	00	<u></u>	00	•10	00	
1	:10		:10		:10	00	:10	00	:10		:10		

Raummaße

Ein "Schritt" gehen: drei "Stellen" weiter

								1					
k	ilo	h ekto d ek		ka	EINHEIT		d ezi		z enti		milli		
Tau	send	Hun	dert	rt Zehn		1		Zehntel		Hundertstel		Tause	ndstel
k ı	m^3	h r	n³	da	m³	n	1 ³	dr	n^3	cr	n³	m m³	
	•10	00	•10	00	•10	00	\. 10	00	•10	000	•10	00	
	:10	00	:10	00	:10	00	:10	00	:10	000	:10	00	
1km		10hm	1		1kn	n	1 (000m					
1hm		10daı	m		1m		1 (000mn	า				
1dam		10m			1dn	n	10	00mm					
1m		10dm	1		1g		1 (000mg					
1dm		10cm			1kg		10	hg					
1cm		10mr	n		1da	g	10	000g					

t (Tonne) = 1 000 kg

Übung Nummer 1:

- 1.) 6 cm = 0.6 dm
- 2.) 80 mg = 0.080 g
- 3.) 4000 cm = 400 dm
- 4.) 0.02 mm = 0.002 cm
- 5.) 9000 t = 900000000 dag
- 6.) 400 dag = 0.00400 t
- 7.) 692 t = 692000000 g
- 8.) 50000 mg = 0.05 kg

Übung Nummer 2:

- 1.) $700 \, \text{g} = 700000 \, \text{mg}$
- 2.) 0,03 dm = 0,003 m
- 3.) 0,003 dag = 0,03 g
- 4.) 0,049 cm = 0,49 mm
- 5.) $7100 \, dm = 710 \, m$
- 6.) 99.9 km = 99900 m
- 7.) 0.3 g = 0.03 dag
- 8.) $0.3 \, \text{dag} = 3 \, \text{g}$

Übung Nummer 3:

- 1.) 0,0008 km = 0.8 m
- 2.) 60,1 mg = 0,0000601 kg
- 3.) 1141 mm = 0,001141 km
- 4.) 79 mg = 0.079 g
- 5.) 506 mg = 0,506 g
- 6.) 2690 kg = 2690000 g
- 7.) 57.9 kg = 5790 dag
- 8.) $5900 \, \text{km} = 5900000 \, \text{m}$

Verschiedene Maßeinheiten

Längenmaße:

m : Meter

in : Zoll (engl. inch) 1in = 1" = 2,54cm

Flächenmaße:

m² : Quadratmeter

ha : Hektar (= hm² = Quadrathektometer) a : Ar (= dam² = Quadratdekameter)

Raummaße:

m³ : Kubikmeter

l : Liter $1l = 1dm^3$ $1000l = 1m^3$

Zeitmaße:

s : Sekunde h : Stunde d : Tag m : Monat a : Jahr

Geschwindigkeit: m/s: Meter pro

km/h : Kilometer pro Stunde

Terme und Variablen

Der Term: Mathematischer Ausdruck mit Zahlen, Buchstaben/Variablen, Rechenzeichen, ...

Variablen: Platzhalter für Zahlen (Beispiel: 2+3=x ... x ist ein Platzhalter für "5")

Addieren und Subtrahieren von Termen

 $2 \cdot a + 3 \cdot a = 5 \cdot a$

Das "Malzeichen" kann hier auch weggelassen werden:

$$2a + 3a = 5a$$

2a+3b+5a+6b=7a+9b

2ab + 5ab = 7ab

(gleiche Variable dürfen addiert/subtrahiert werden)

$$a^2 + 2a^2 + 7a + 3b + 5b = 3a^2 + 7a + 8b$$

(Variable mit gleichen Hochzahlen dürfen addiert/subtrahiert werden)

Merke: Gleiche Variable oder Variable mit gleichen Hochzahlen dürfen addiert/subtrahiert werden. Verschiedene Variable nicht!

Multiplieren von Termen

 $3a \cdot 2 = 6a$ (Die Zahlen können multipliziert werden) $5a \cdot 3 + 2b \cdot 12 = 15a + 24b$ ("Punktrechnung" vor "Strichrechnung"!)

Multiplizieren von Termen mit Hochzahlen

$$a \cdot a = a^2$$
 $a \cdot a \cdot a = a^3$
 $2a \cdot 3a = 6a^2$
 $a^9 = a \cdot a$
 a^{17} a ... Basis 17 ... Hochzahl

Merke: Die Hochzahl gibt an, wie oft die Basis mit sich selbst multipliziert wird! Potenzen zu verwenden spart Zeit.

In der Mathematik sprechen wir von "vereinfachen", wenn ein Term einfacher dargestellt wird.

Aufgabe: Vereinfache den Term

(6-10x)

Gleichungen

Eine hat folgende Form:

Linke Seite = Rechte Seite

Beispiele für Gleichungen:

$$1 = 1$$

$$U = a + b + c + d$$

$$V = G \cdot h$$

Äquivalenzumformung

Das Ziel ist oft, dass eine Variable in der Gleichung alleine auf einer Seite steht. Dann spricht man von der Expliziten-Form.

Beispiel (x ist explizit)

$$x = 33$$
$$x = 2a + 16b + 3$$

Nicht immer steht die Variable alleine auf einer Seite. Deshalb kann man die Gleichung umformen (das ist die Äquivalenzumformung). Stell dir vor, dass eine Gleichung eine Waage ist. Damit die Waage im Gleichgewicht bleibt muss links und rechts immer das Gleiche passieren. Gibt man links etwas hinzu, dann muss rechts das Gleiche hinzugegeben werden!

Wir können bei einer Gleichung einfach Zahlen und Variable addieren, subtrahieren, multiplizieren und dividieren. ABER: Imme auf beiden Seiten

Merke: Links und rechts muss immer das Gleiche passieren!

Beispiel 1:

x + 5 = 12	-5
x + 5 - 5 = 12 - 5	links und rechts ausrechnen
x + 0 = 7	0 muss man nicht aufschreiben
x = 7	nun ist x explizit

Nachdem man fertig ist muss die Probe gemacht werden. Diese zeigt, ob richtig gerechnet wurde. Dazu einfach den Wert für x in die erste Zeile der Gleichung eingeben.

Probe:

$$x + 5 = 12$$
 | Erste Zeile
 $7 + 5 = 12$ | Statt x muss jetzt "5" eingesetzt werden
 $7 = 7$ | Wenn links und rechts das Gleiche steht, ist alles richtig

Beispiel 2:

2x = 12	2x heißt "2 mal x"	
$2 \cdot x = 12$:2	
x = 12:2	ausrechnen	
x = 6	nun ist x explizit	
Probe:		
2x = 12	Erste Zeile	
$2 \cdot 6 = 12$	Statt x muss jetzt "6" eingesetzt werden	
12 = 12	richtig	

Merke: Durch die Umformung fällt auf einer Seite eine Zahl oder Variable einfach weg.

Flächenberechnung bei verschiedenen Dreiecken

Das allgemeine Dreieck

Dieses Dreieck kann beliebige Längen und Winkel haben, die Berechnung für die Fläche ist immer gleich.

$$A = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$$

Merke: Für alle Dreiecke gilt die Flächenformel Grundseite "mal" Höhe "durch" 2!

Beispiel:

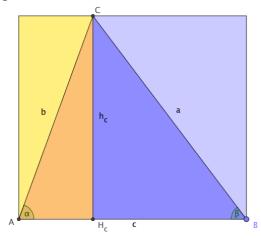
geg. \triangle

c = 8cm

 $\alpha = 70^{\circ}$

 $\beta = 53^{\circ}$

ges. h_c, A



h_c abmessen (7,16cm)

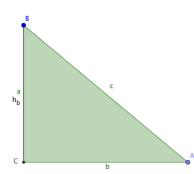
$$A = \frac{c \cdot h_c}{2}$$

$$A = \frac{8cm \cdot 7,16cm}{2} = 28,64cm^2$$

$$A = 28,64cm^2$$

Merke: Das Dreieck kann gedreht werden. Dann gilt auch $A = \frac{b \cdot h_b}{2}$ oder $A = \frac{a \cdot h_a}{2}$!

Das rechtwinkelige Dreieck



Im rechtwinkeligen Dreieck ist eine Seite gleich groß wie die Höhe. In der Zeichnung (links) ist die Länge "a" gleich groß wie die Länge "h_b". Deshalb gilt die Formel:

$$a = h_b \quad A = \frac{b \cdot h_b}{2} = \frac{a \cdot b}{2}$$

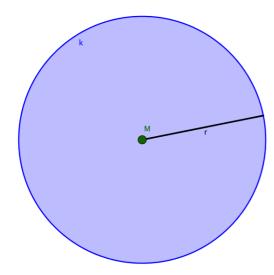
Für rechtwinkelige Dreiecke gilt generell:

$$A = \frac{Kathete \cdot Kathete}{2}$$

Der Zylinder

Der Zylinder ist ein Prisma mit einem Kreis als Grund- und Deckfläche. Das heißt die beiden Kreise stehen parallel zueinander und sind gleich groß.

Wiederholung: der Kreis



Der Kreis besteht aus dem Umfang (k oder u), einem Mittelpunkt (M) und dem Radius (r). Es gibt auch noch den Durchmesser (d).

$$d = 2 \cdot r$$

Formeln für den Kreis:

$$A = \pi \cdot r^2$$

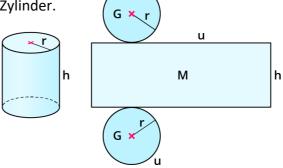
$$U = 2 \cdot r \cdot \pi = d \cdot \pi$$

 π (Pi) ist dabei eine unendlich lange Konstante Zahl (3,1415...). Sie steht deshalb extra am Taschenrechner. Die Konstruktion kann mit dem Zirkel gezeichnet werden.

Zylinder - Beispiele:

Im täglichen Leben sehen wir oft verschiedene Zylinder.

- Getränkedosen
- Teile von Trinkflaschen
- Gläser
- Tassen
- Stifte
- Rollen
- Werbewand
- _



In der Zeichnung rechts sieht man r (Radius), G (Grundfläche), M (Mantel) und h (Höhe). Der Zylinder besteht aus 2 Kreisen (Grundfläche und Deckfläche) und einem Rechteck (Mantel).

Deshalb gilt hier das Gleiche wie bei allen Prismen: $O = 2 \cdot G + M$ und $V = G \cdot h$

Merke: Der Zylinder ist ein Prisma, alle Formeln gelten hier auch.

Beispiel – Zylinder

Geg. Zylinder

Skizze:

r = 3cm

h = 12cm

ges. G, O, V

$$A = \pi \cdot r^2$$
 (Kreisfläche)

$$G = \pi \cdot 3^2 = \pi \cdot 9 = 28.27 cm^2$$

$$O = 2 \cdot G + M$$

$$M = u \cdot h$$

$$u = 2 \cdot r \cdot \pi = 2 \cdot 3 \cdot \pi = 18.85cm$$

$$O = 2 \cdot 28,27cm^2 + 18,85cm \cdot 12cm$$

$$O = 56,54cm^2 + 226,2cm^2$$

$$O = 282,74cm^2$$

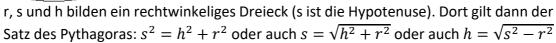
$$V = G \cdot h$$

$$V = 28,27cm^2 \cdot 12cm$$

$$V = 339,24cm^3$$

Der Kegel

Der Kegel gehört nicht zu den Prismen (er hat keine Deckfläche). Der Kegel ist eine Pyramide mit einem Kreis als Grundfläche. Er besteht saus dem Radius r der Grundfläche, der Seitenkantenlänge sund der Höhe h. Die Höhe ist der Abstand zwischen Grundfläche und Spitze. Im Alltag findet man viele Beispiele, wie den Verkehrskegel (Pylone) oder eine Eistüte.



Oberfläche und Volumen des Kegels

Die Oberfläche besteht aus Grundfläche und Mantel (O = G + M).

$$O = G + M$$

$$0 = \frac{r^2 \cdot \pi}{r \cdot s \cdot \pi}$$

Die Formel für das Volumen ist wie bei den Pyramiden auch hier:

$$V = \frac{1}{3} \cdot \frac{G}{G} \cdot h$$

$$V = \frac{1}{3} \cdot \frac{r^2 \cdot \pi}{r^2 \cdot \pi} \cdot h$$

Beispiel "Eistüte"

Die Klassische Eistüte ist ein Kegel. In diesem Beispiel wird sogar ein ganzes Eis berechnet.

Gegeben: Kegel

r = 2,5cm

s = 12cm

gesucht: O, V

$$O = G + M$$

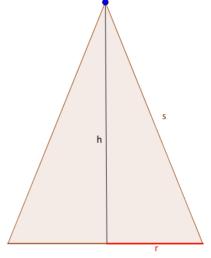
$$0 = \frac{r^2 \cdot \pi}{r \cdot s \cdot \pi}$$

$$O = 2.5^2 \cdot \pi + 2.5 \cdot 12 \cdot \pi$$

$$0 = 19,63 + 94,25$$

$$0 = 113,88cm^2$$

$$V = \frac{1}{3} \cdot \frac{G}{G} \cdot \frac{h}{h}$$



(ACHTUNG: h muss erst mit dem Satz des Pythagoras berechnet werden)

$$V = \frac{1}{3} \cdot r^2 \cdot \pi \cdot \mathbf{h}$$

$$V = \frac{1}{3} \cdot \frac{\mathbf{r}^2 \cdot \mathbf{\pi}}{\mathbf{r}} \cdot \frac{\mathbf{h}}{\mathbf{h}}$$

$$V = \frac{1}{3} \cdot \frac{2,5^2 \cdot \mathbf{\pi}}{\mathbf{r}} \cdot 11,74$$

$$V = 76,84cm^3$$

$$V = 76.84cm^3$$

$$h = \sqrt{s^2 - r^2}$$

$$h = \sqrt{s^2 - r^2} h = \sqrt{12^2 - 2,5^2}$$

$$h = \sqrt{144 - 6,25}$$

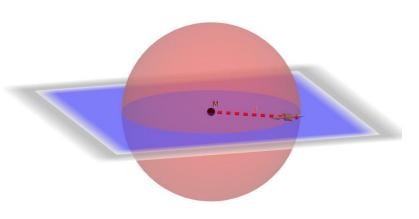
$$h = \sqrt{137,5}$$

$$h = 11,74cm$$

Die Kugel

Die Kugel ist ein Körper (aber kein Prisma). Die Kugel hat einen Mittelpunkt (M). In der Mitte gibt es eine Querschnitts-fläche (hier blau/rot). Diese Fläche ist ein Kreis.

Der Radius der Kugel geht von außen bis zum Mittelpunkt.



Beispiel:

Gegeben: Kugel

r = 6cm

gesucht: V, O

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

$$V = \frac{3}{3} \cdot \pi \cdot V^{3}$$

$$V = \frac{4}{3} \cdot \pi \cdot 6^{3} = 904,78cm^{3} = 0,9dm^{3} = 0,9l$$

$$0 = 4 \cdot \pi \cdot r^{2}$$

$$0 = \overset{3}{4} \cdot \pi \cdot r^2$$

$$0 = 4 \cdot \pi \cdot 6^2 = 452,39cm^2 = 4,53dm^2$$

Die Wurzel

In der Mathematik gehören Potenzen und Wurzeln zusammen. Meistens rechnen wir mit der Quadratwurzel ($\sqrt[2]{a} = \sqrt{a}$)

 $\sqrt[n]{a}$

√ ... Wurzelzeichen

n ... Wurzelexponent

a ... Radikand

Beispiel:

$$\sqrt{4} = 2 (2^2 = 4)$$
 $\sqrt{16} = 4 (4^2 = 16)$ $\sqrt{144} = 12 (12^2 = 144)$

Wurzeln können einfach mit dem Taschenrechner berechnet werden. Bei unserem Modell funktioniert das so wie im Bild links.

Wurzeln brauchen wir nicht sehr oft, trotzdem ist es wichtig zu wissen, wo wir sie brauchen/benutzen.

Beispiel:

Gegeben: Quadrat

 $A = 64cm^2$

Gesucht: a

$$A = a \cdot a \rightarrow A = a^2 \rightarrow \sqrt{A} = a$$
$$\sqrt{64} = 8cm \rightarrow a = 8cm$$

Terme und Wurzeln

Mathematische Terme können auch Wurzeln enthalten.

Beispiel:

$$3a + 6a + 2b \cdot 3 + \sqrt{7 \cdot a^3 \cdot b^5} = 9a + 6a + a^2 \cdot b^4 \cdot \sqrt{7 \cdot a \cdot b} = 15a + a^2b^4 \cdot \sqrt{7ab}$$

Zahlenmengen

Eine Zahlenmenge ist eine Menge von Zahlen. Es gibt "kleine" Mengen aber es gibt auch Mengen mit unendlich vielen Zahlen.

Beispiel:

```
Die Menge der geraden Zahlen: \{2;\ 4;\ 6;\ 8;\ 10;\ 12;\ ...\}
Die Menge der ungeraden Zahlen: \{1;\ 3;\ 5;\ 7;\ 9;\ ...\}
Die Menge der positiven Zahlen: \{1;\ 2;\ 3;\ 4;\ 5;\ 6;\ 7;\ ...\}
Die Menge der negativen Zahlen: \{...;\ -7;\ -6;\ -5;\ -4;\ -3;\ -2;\ -1\}
Die Menge der Zahlen zwischen 2 und 7: \{2;\ 3;\ 4;\ 5;\ 6;\ 7\}
```

Menge der natürlichen Zahlen N

Natürliche Zahlen sind positiv, sind keine Brüche oder Dezimalzahlen (mit Komma) $\mathbb{N} = \{0; 1; 2; 3; 4; ...\}$

Menge der ganzen Zahlen $\mathbb Z$

Ganze Zahlen sind positiv und negativ, sind keine Brüche oder Dezimalzahlen (mit Komma) $\mathbb{Z} = \{...; -4; -3; -2; -1; 0; 1; 2; 3; 4; ...\}$

Menge der rationalen Zahlen Q

Rationale Zahlen sind positiv und negativ. Alle Zahlen, die als Bruch geschrieben werden können sind rationale Zahlen.

$$\mathbb{Q} = \left\{ \dots; -4; -\frac{1}{2}; -\frac{1}{3}; -0.001; 0; \frac{4}{7}; 1; 2; 3.38; \dots \right\}$$

Menge der irrationalen Zahlen I

Irrationale Zahlen sind positiv und negativ. Alle Zahlen, die nicht als Bruch geschrieben werden können sind irrationale Zahlen.

$$I = \{\pi; \ e; \ \sqrt{2}; \ \sqrt{6}; \dots\}$$

Menge der reellen Zahlen ${\mathbb R}$

Alle bisherigen Zahlenmengen zusammen sind die reellen Zahlen

$$\mathbb{R} = \{ \mathbb{N}; \ \mathbb{Z}; \ \mathbb{Q}; \ \mathbb{I} \}$$

Mathematische Fachsprache / Zeichen

In der Mathematik verwenden wir Zeichen. Das zu schreiben ist kürzer und schneller, wir müssen jedoch diese Zeichen lernen. + und – kennen wir schon, es gibt auch für die Mengen eigene Zeichen:

```
∈ ... ist Element von ...
∉ ... ist <u>nicht</u> Element von ...
∪ ... und
∀ ... alle
∃ ... eines
∄ ... keines
\ ... ohne
| ... für die/das gilt
```

Beispiele für mathematische Zeichen

Mathematisch: $3 \in \mathbb{Z}$

: Drei ist Element der ganzen Zahlen Gesprochen

Mathematisch: $\sqrt{2} \in \mathbb{I} \cup \mathbb{R}$

Gesprochen : Wurzel Zwei ist Element der irrationalen und der reellen Zahlen

Mathematisch: $\mathbb{N} = \{x \in \mathbb{Z} | x \ge 0\}$

Gesprochen : Natürliche Zahlen sind alle Zahlen die Element der ganze Zahlen größer

oder gleich groß 0 sind.

Mathematisch: $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$

Gesprochen : Irrationale Zahlen sind alle reellen Zahlen ohne die rationalen Zahlen.

Der Satz des Pythagoras

Der Grieche Pythagoras (von Samos) lernte in Ägypten und Babylonien viel von den Leuten. Er machte sich über Astronomie und Mathematik Gedanken. Im ist aufgefallen, dass ein Dreieck mit den Seitenlängen 3, 4 und 5 immer rechtwinkelig ist. Wenn ein rechtwinkeliges Dreieck ganzzahlige Seitenlängen hat, dann heißen dieses Zahlen auch Pythagoreische Zahlentripel.

Der Satz des Pythagoras wird für die Berechnung einer fehlenden Kathete Seite im rechtwinkeligen Dreieck benützt.

Die Seiten des rechtwinkligen Dreiecks haben besondere Namen. Die längste Seite ist die Hypotenuse, die beiden anderen heißen Katheten.

Wie im Dreieck üblich werden für die drei Seiten gerne die Buchstaben a, b und c verwendet. Deshalb lautet der berühmte mathematische Satz:

$$c^2 = a^2 + b^2$$

Durch Umformung dieser Gleichung ergibt sich für jede Dreiecksseite eine eigene Formel:

$$c = \sqrt{a^2 + b^2}$$

$$b = \sqrt{c^2 - a^2}$$
 $a = \sqrt{c^2 - b^2}$

$$a = \sqrt{c^2 - b^2}$$

Beispiel:

Kathete

Gegeben: rechtwinkeliges Dreieck

a=9,6cm b=2,8cm

Gesucht: c

1. Schritt: Formel aufschreiben

$$c^2 = a^2 + b^2$$

2. Schritt: Formel umformen

$$c = \sqrt{a^2 + b^2}$$

3. Schritt: Zahlen einsetzen

$$c = \sqrt{9,6^2 + 2,8^2}$$

4. Schritt: Ausrechnen

c=10cm

Gegeben: rechtwinkeliges Dreieck

c=17cm a=15cm

Gesucht: b

1. Schritt: Formel aufschreiben

$$c^2 = a^2 + b^2$$

$$b^2 = c^2 - b^2$$

$$b = \sqrt{c^2 - b^2}$$

$$b = \sqrt{17^2 - 15^2}$$

b=8cm

Funktionen

Funktionen sind Zuordnungen. Sie ordnen einer "Größe" (Element) genau eine "Größe" (Element) zu.

Beispiel

Stell dir vor, du willst Eis essen gehen, eine Kugel kostet 1,10€.

Kugeln	Euro
0	0,00
1	1,10
2	2,20
3	3,30
4	4,40
5	5,50

In der Tabelle siehst du den Preis für 1 Kugel, für 2 Kugeln, ... Daran kannst du erkennen, dass für jede Kugel, die du nimmst 1,10€ zu bezahlen sind.

1 Kugel : 1 mal 1,10€ = 1,10€ 2 Kugeln : 2 mal 1,10€ = 2,20€ 3 Kugeln : 3 mal 1,10€ = 3,30€

Stell dir vor du hast x Kugeln (x steht für eine beliebige Anzahl).

x Kugeln : x mal 1,10€ = 1,10*x

Allgemein kann man sagen:

 $P(x) = 1.10 \cdot x$

P(x)...Preis für x Kugeln (x steht für eine beliebige Anzahl von Kugeln)

Ein weiteres Beispiel:

Ich fahre mit der Straßenbahn und bezahle für jede Station, die ich fahre. Eine Station kostet 0,05€ (das sind 5c).

 $P(S) = 0.05 \cdot x$

P(S)...Preis für S Stationen (S Steht für eine beliebige Anzahl von Stationen)

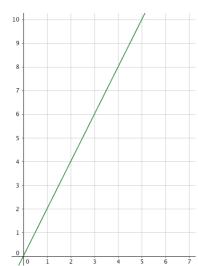
Darstellung von Funktionen

Funktionen können als Graf ("Zeichnung"), als Wertetabelle oder als Funktionsgleichung dargestellt werden. Hat man eines dieser drei Teile, dann kann man die beiden weiteren einfach "berechnen" oder "zeichnen".

$$f(x) = \frac{\mathbf{k}}{\mathbf{k}} \cdot x$$

f(x) ... Funktionswert (z.B. Der Preis für x Portionen)

k ... Steigung (z.B. Der Preis für eine Portion oder die Preiszunahme pro Portion)



Beispiel:

Ein Frühstückspaket besteht aus einem Getränk und einem belegten Brot und kostet 2€. Das heißt: 2 Pakete kosten 4€ usw. Die Steigung beträgt deshalb 2€.

Wertetabelle			Funktionsgleichung
Х	f((x)	$f(x) = k \cdot x$
0	0	0 · 2	k = 2
1	2	1 · 2	
2	4	2 · 2	$f(x) = 2 \cdot x$
3	6	3 · 2	
4	7	4 · 2	

Tipp: Um einen Graf zu zeichnen ist es hilfreich vorher eine Wertetabelle aufzustellen.

Funktionen im Alltag

Im Leben dreht sich alles um Funktionen, sie sind sehr wichtig. Wir merken eigentlich nicht viel von ihnen. Wenn wir nach Funktionen suchen, dann finden wir sie schnell.

Handytarif – Mobilfunkvertrag

Mit dem Smartphone möchten alle gerne telefonieren, SMS schreiben und natürlich im Internet surfen. Dazu braucht man einen Mobilfunkvertrag. Für Geld kann dort ein Tarif ausgewählt werden.

Tarif "Super" hat eine Grundgebühr von 4€ im Monat. 1000 Minuten/SMS/Mb sind mit dabei. Jede Minute, SMS oder für jedes Mb darüber muss bezahlt werden. Kosten pro Min/SMS/Mb: 0,02€ (2c).

Beispiel:

Tarif "Super"

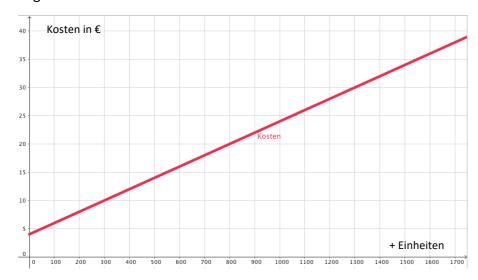
1.) Grundgebühr € 4,00

 2.) Gesprächseinheiten:
 1.200min (+200)

 3.) SMS
 1.762 SMS (+762)

 4.) Internet
 1.187 Mb (+187)

Frage: Wie viel muss ich bezahlen?



Lösung:

Die monatliche Grundgebühr beträgt 4€. Deswegen muss ich immer 4€ bezahlen (auch wenn ich nicht telefoniert habe).

Ich habe 200+762+187 Einheiten zu viel verbraucht. Das sind 1149 Einheiten. Für jede Einheit muss ich 0,02€ extra bezahlen.

 $1149 \cdot 0.02 = 22.98$

Grundgebühr: 4,00€ +Einheiten : 22,98€

Summe : 26,98€

Antwort: Ich muss 26,98€ bezahlen.

Funktionsgleichung mit "Grundgebühr"

Wie kann ich mathematisch sagen, dass ich 4€ Grundgebühr bezahle und 0,02c für jede verbrauchte +Einheit?

Gesamtkosten (K) = 0,02c mal "+Einheiten" plus Grundgebühr $K(x) = 0,02 \cdot x + 4$

Äpfel kaufen

Ich möchte gerne Äpfel einkaufen und muss dafür mit dem Auto fahren. Die Fahrt zum Geschäft kostet immer 1,50€. Ein kg Äpfel kostet 0,8€. Wie viel muss ich insgesamt bezahlen, wenn ich 5kg Äpfel kaufe?

Funktionsgleichung-Allgemein

Jede lineare (geradlinige) Funktion hat diese Gleichung:

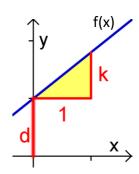
$$f(x) = k \cdot x + d$$

f(x) ... Funktion

k ... Steigung (Konstante)

x ... Wertanzahl (Variabel; zum Beispiel: Minuten, Liter, ...)

d ... Abstand auf der y-Achse / Fixkosten / Grundgebühr / ...



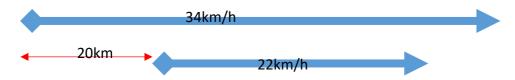
Weitere Infos am Computer anschauen: goo.gl/ANJujH

Weg-Zeit Funktion

Stell dir vor, du fährst mit dem Fahrrad 22km/h. Das heißt, in einer Stunde fährst du 22km. Erstelle eine Wertetabelle und versuche die Funktionsgleichung aufzuschreiben.

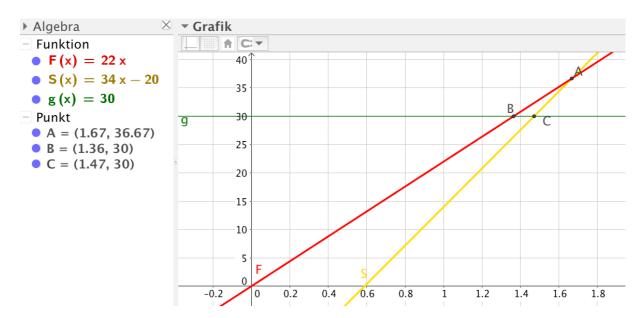
Weg-Zeit Funktion mit Vorsprung

Stell dir vor, du fährst mit dem Fahrrad 22km/h. Du fährst langsam, dein Freund fährt 34km/h schnell. Ihr wollt Euch gemeinsam treffen. Dein Freund wohnt weiter weg und muss deshalb 20km mehr fahren. Ihr fahrt beide zugleich weg. Irgendwann überholt er dich.



- 1. Frage: Wie lange brauchst du für 30km?
- 2. Frage: Wie lange braucht dein Freund für 30km?
- 3. Frage: Nach wie vielen Minuten überholt dich dein Freund?
- 4. Frage: Nach wie vielen Kilometern überholt dich dein Freund?

	ICH	FREUND
х	f(x)	f(x)
0	0	-20
1	22	14
2	44	48
3	66	82
4	88	116
5	110	150
6	132	184
7	154	218



Statistik und Diagramme

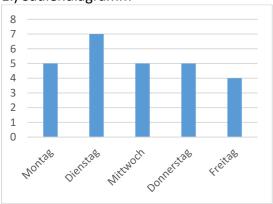
Diagramme sind Darstellungen von Werten.

Beispiel: Wie viele Stunden bin ich in der Schule:

Montag : 6 Dienstag : 7 Mittwoch : 5 Donnerstag : 5

Freitag: 4

1.) Säulendiagramm



2.) Kreisdiagramm



3.) Liniendiagramm und Punktdiagramm

